Geometric and Homotopy Theoretic Methods Innielsen Coincidence Theory

نویسنده

  • ULRICH KOSCHORKE
چکیده

In classical fixed point and coincidence theory, the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs ( f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC( f1, f2) (and MC( f1, f2), resp.) of path components (and of points, resp.) in the coincidence sets of those pairs of maps which are ( f1, f2). Furthermore we deduce finiteness conditions for MC( f1, f2). As an application, we compute both minimum numbers explicitly in four concrete geometric sample situations. The Nielsen decomposition of a coincidence set is induced by the decomposition of a certain path space E( f1, f2) into path components. Its higher-dimensional topology captures further crucial geometric coincidence data. An analoguous approach can be used to define also Nielsen numbers of certain link maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Aspects of Multiagent Systems

Recent advances in Multiagent Systems (MAS) and Epistemic Logic within Distributed Systems Theory, have used various combinatorial structures that model both the geometry of the systems and the Kripke model structure of models for the logic. Examining one of the simpler versions of these models, interpreted systems, and the related Kripke semantics of the logic S5n (an epistemic logic with n-ag...

متن کامل

Nonstabilized Nielsen coincidence invariants and Hopf--Ganea homomorphisms

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. We extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as our main tool. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coinciden...

متن کامل

Geometric cobordism categories

In this paper we study cobordism categories consisting of manifolds which are endowed with geometric structure. Examples of such geometric structures include symplectic structures, flat connections on principal bundles, and complex structures along with a holomorphic map to a target complex manifold. A general notion of “geometric structure” is defined using sheaf theoretic constructions. Our m...

متن کامل

Geometric versus Homotopy Theoretic Equivariant Bordism

By results of Löffler and Comezaña, the Pontrjagin-Thom map from geometric G-equivariant bordism to homotopy theoretic equivariant bordism is injective for compact abelian G. If G = S×. . .×S, we prove that the associated fixed point square is a pull back square, thus confirming a recent conjecture of Sinha [22]. This is used in order to determine the image of the Pontrjagin-Thom map for toral G.

متن کامل

Cohochschild Homology of Chain Coalgebras

Generalizing work of Doi and of Idrissi, we define a coHochschild homology theory for chain coalgebras over any commutative ring and prove its naturality with respect to morphisms of chain coalgebras up to strong homotopy. As a consequence we obtain that if the comultiplication of a chain coalgebra C is itself a morphism of chain coalgebras up to strong homotopy, then the coHochschild complex c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006